全身持久力評価としての20m Shuttle Run Test のプロトコルを用いた15m Shuttle Run Test の妥当性の検討

栗 下 剛1) 佐伯 裕介2) 興座 嘉康3)

Validity of the 15 m Shuttle Run Test using the protocol of 20 m Shuttle Run Test for the Assessment of Exercise Capacity

Tsuyoshi KURISHITA, Yusuke SAEKI, Yoshiyasu YOZA

１）熊本機能病院 急病リハビリテーション部
２）京都民医連中央病院 リハビリテーション療法課
３）熊本保健科学大学 保健科学部 リハビリテーション学科 理学療法学専攻

和文抄録
【目的】15m Shuttle Run Test（15mSRT）の最大運動能力評価についての妥当性を心肺運動負荷試験（Cardiopulmonary Exercise Test：CPX）との関係から検討することである。

【方法】前年検査29名に対し15mSRTとCPXを実施し、15mSRTの移動距離とCPXによる最大酸素摂取量（peakVO2）との相関から妥当性を検討し、peakVO2の予測式を求めその精度を確認し、15mSRTの妥当性を検討した。

【結果】15mSRTの移動距離とCPXによるpeakVO2に有意な相関（r=0.63）が認められた。

【結論】本研究により15mSRTの最大運動能力評価についての妥当性が示唆された。

キーワード: 15m Shuttle Run Test・心肺運動負荷試験 (CPX)・妥当性・最大運動能力評価・酸素摂取量

I. はじめに

20世紀後半におけるわが国の保健医療対策は、“成人病の早期発見・早期治療”であり、治療に重点がおかれてきたが、本格的な高齢化社会の到来に備えて、健康で活力のある社会を構築する必要に迫られてきた。そのため1978年から疾病の予防と健康増進を図るために、「国民健康づくり運動（第一次国民健康づくり対策）」が開始され、中高年者の健康管理が注目されている。中高年者が健康で充実した日常生活を送る上で重要点は一定の体力水準を維持することと言われている。体力を構成する要素のうち健康と関連が深いものとしては、全身持久力、筋力、筋持久力などがあげられている。特に全身持久性の維持向上は重要な要素であり、健康状態の指標の一つとして全身持久性を評価し、各個人の適切な運動量を決定することは重要であると考えられている1) 2)。

中でも、20m Shuttle Run Test（以下、20mSRT）3) は、文部科学省の新体力テストにおける全身持久性能力測定法として小学校、中学校、高等学校で実施されており4)。10m Shuttle Walking Test（以下、10mSWT）5) は呼吸リハビリテーション分野において広く用いられている6)。しかし、中高年者を対象に行うフィールドテストとしては、運動負荷が20mSRTでは大きく、10mSWTでは小さいという
問題があった。そこで、運動負荷を中高年者に適応させるため、10mSWTで用いられる10mコースを15mに修正し、歩行と走行を組み合わせた15m Shuttle Walk and Run Test（以下、15mSWRT）が開発され、中高年者の全身持久性を評価する新しいフィールドテストとして報告されている。

しかし、三川らの報告によると15mSWRTの最終ステージの酸素摂取量は、51.2±8.3ml/kg/minであり、松井らの報告による中高年者の基準値30～46ml/kg/minをわずかに超えるだけであり、体力水準の高い中高年者を対象とした際に十分な運動負荷であるかは疑問であった。そこで、池之野らは、15mSWRTは10mSWTのプロトコルを用いており、最終レベルが12までであるのに対し、20mSRTは、スポーツ選手を対象に開発され、最終レベルが22であリに着目し、20mSRTのプロトコルは適応した15mShuttle Run Test（以下、15mSRT）を考察し、報告している。15mSRTは20mSRTよりも負荷が抑えられ、従来の15mSWRTの最終レベルである12の値も運動負荷が可能となり体力水準の高い中高年者にも適用可能である可能性が示された（表1）。しかし、15mSRTと心肺運動負荷試験（Cardiopulmonary Exercise Test：以下、CPX）との関係は検討されていない。

そこで本研究では、基礎的観測を得るために若年者健常者を対象に15mSRTの妥当性をCPXとの関係から検討したので報告する。

II. 方 法

1. 対象

対象は若年健常者29名である（男性14名、女性15名）。年齢は20.5±0.7歳（平均±標準偏差）、身長は164.0±7.5cm、体重は55.9±6.6kgであった。なお、本研究は熊本保育科学大学ライフサイエンス倫理審査委員会の承認（B4-24-3）を受け、全対象者に本研究の目的、方法、リスクなどを十分に説明し、文書にて同意を得て実施した。

2. 方法

対象者の15mSRTとCPXを3日以上の隔間を空け3週間以内に実施した。また、実施する順序は無作為とし、15mSRTは1回の練習を行った後テストを実施した。なお、15mSRTおよびCPXの実施前にテストについて十分なオリエンテーションを行い、最大限努力するように指示した。服装は動きやすい服装とし、必ず運動靴を着用させた。

15mSRTは1分ごとに速度が増加する漸増負荷試験であり、片道15mのシャトルコースを用い、文部科学省の新体力テストにおける20mSRTの方法に準じて実施した。20mSRTのCDを再生し、一方の線に立ち、電子音によりスタートする。次の電子音が鳴るまでに先の線に達し、その場で向きを変える。この動作を繰り返す。電子音の前に線に達してしまった場合は、向きを変え、電子音を待つ。電子音が鳴った後に走り始めめる。CDによって設定された電子音の間隔は、初期はゆっくりであるが、約1分ごとに電子音の間隔は短くなる。すなわち、走行速度は約1分ごとに増加していくため、できる限り電子音の間隔についていくようにする。終了基準は、2回続けてどちらかの足で線に触れることがことができなくなったときとし、電子音からの遅れが1回の場合、次の電子音に間に合い、遅れを解消することことができればテストを継続させた。移動距離は達成したシャトル数に15mを乗算することで算出した。CPXは呼気ガス採取用マスクを装着し、心拍数、呼吸数が安定するまで半座位エルゴメータ（ストレンスエルゴ BK-ERG-003）上で安静座位を取った。そしてベガル回転数を60rpmとし、無負荷で3分
間のウォーミングアップ後に、男性は毎分25watt、女性は15wattのランプ負荷法にて実施した。終了基準は被験者回数が50rpm以上を維持できなくなったとき、または予測最大心拍数（220−年齢）の90%に到達したときとした。

15mSRT、CPX両テスト中の最高心拍数（以下peakHR）は心拍数計（Polar Electro CE 0537 N 2965: POLAR社製）を用い、最高酸素摂取量（以下peakVO₂）はCPX中ののみ呼気ガス分析器（METAMAX 3B: ドイツ・コールテックス社製）を用い、Breath by Breath法にて測定した。15mSRT、CPX両テストともに試験終了後の血圧およびBorg Scaleによる自覚的運動強度（息切れ感と下肢疲労感）を測定した。

3. 統計処理
15mSRTとCPXにおけるpeakHR、血圧の差は対応のあるt検定を用い、自覚的運動強度の差をWilcoxon signed-rank testにて比較検討した。15mSRTの移動距離とCPXによるpeakVO₂の関係をPearsonの相関分析にて検討し、peakVO₂の予測式を一次回帰直線に適用して求めた。そして予測式から算出した予測最高酸素摂取量（以下予測peakVO₂）とCPXで得られたpeakVO₂の系統誤差をBland-Altman分析にて検討した。なお、統計ソフトはIBM SPSS Statistics（version 20）を用い、有意水準は5%未満とした。

III. 結 果
15mSRTとCPXにおけるpeakHR、終了時の血圧および自覚的運動強度を表2に示す（表2）。下肢疲労感には有意差を認めなかったが、peakHR、血圧、息切れ感に有意差を認めた。

15mSRTの移動距離とCPXによるpeakVO₂の関係を図1に示す（図1）。15mSRTの移動距離が長くなるほど、CPXによるpeakVO₂も高くなり、有意な相関（r = 0.63）が認められ、求められた一次回帰直線の式は、y = 0.0106x + 20.855であった。次に、一次回帰直線の式から算出した予測peakVO₂とCPXによるpeakVO₂のBland-Altman plotを図2に示す（図2）。平均誤差は0.33ml/kg/minであり、予測peakVO₂に占める平均誤差の割合は92.9%であった。95%信頼区間は−0.28～0.78であり、算出誤差は認められなかったが、Bland-Altman plotに

![表2](file)

<table>
<thead>
<tr>
<th>15mSRT</th>
<th>CPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>peakHR (bpm)*</td>
<td>196.8 ± 9.5</td>
</tr>
<tr>
<td>終了時SBP (mmHg)*</td>
<td>152.9 ± 13.5</td>
</tr>
<tr>
<td>終了時DBP (mmHg)*</td>
<td>89.4 ± 13.2</td>
</tr>
<tr>
<td>終了時息切れ感（Borg）*</td>
<td>17(15-20) 15(12-18) 17(14-20)</td>
</tr>
<tr>
<td>終了時下肢疲労感（Borg）*</td>
<td>17(14-20) 17(14-20)</td>
</tr>
</tbody>
</table>

* p < 0.05 平均値 ± 標準偏差 中央値（最小～最大）peakHR：最高心拍数 SBP：収縮期血圧 DBP：拡張期血圧

説明：15mSRTとCPXにおけるpeakHR、終了時の血圧および自覚的運動強度
意を回帰（$r = -0.49$）があり、比例誤差が認められた。

IV. 考察

本研究の結果は、15mSRTにおける移動距離とCPXによるpeakVO₂に有意な相関を認めた。15mSRTにおける移動距離からpeakVO₂を予測できる可能性を示唆している。

本研究では、15mSRTの妥当性の検討として、15mSRTとCPXによるpeakVO₂との関係から同時的妥当性を検討した。同時的妥当性は、検定された他の尺度を妥当性の外的基準とし、それらの相関関係を強弱によって評価される。15mSRTの移動距離とCPXによるpeakVO₂の相関係数は$r = 0.63$であった。一般的に0.4<r<0.7の範囲内でやや強い相関とされている。15mSRTの妥当性が示唆された。

先行研究において10mSWTでは、距離をX軸にした場合、距離は加速度によって鉛直的に曲線的に増加するため、曲線的増加を示す酸素摂取量と高い直線性を示すという報告がある。これらにより、本研究の15mSRTにおいても、距離をX軸にした場合、酸素摂取量は直線的に増加を示していると考えられる。したがって、一次回帰直線の式から酸素摂取量を予測する場合は、15mSRTの移動距離を用いることが望ましく、予測peakVO₂ = 0.0106×移動距離+20.85という予測式が導き出された。この予測式の精度を示した予測peakVO₂とCPXによるpeakVO₂との系統誤差を検討した。系統誤差である加算誤差と比例誤差を挙げさせる方法の1つとして、Bland-Altman分析がある。加算誤差は測定値の大小にかかわらず、特定方向に生じる誤差である。統計学的には、2つの測定値の差の平均の95%信頼区間が0を含まない場合、測定値が一定方向に分布しているとして、加算誤差が存在すると判断される。対して、比例誤差は、測定値に比例して大きくなる誤差のことである。統計学的には、Bland-Altmanplotの回帰の検定で有意とされた場合、比例誤差が存在すると判断される。今回、算出した予測peakVO₂とCPXによるpeakVO₂との差を平均において、95%信頼区間に0を含み、Bland-Altmanplotに有意な回帰が認められたことから、加算誤差は認められなかったものの、比例誤差が認められた。

15mSRTの移動距離が長いほど、予測peakVO₂とCPXによるpeakVO₂の系統誤差が大きくなることが示唆された。しかし、予測peakVO₂に占める平均誤差の割合は0.92%小さかったため、臨床的許容できる範囲内であると考えられえた。

以上より、健常若年者における15mSRTの妥当性が示唆された。しかし、15mSRTの移動距離から予測peakVO₂を求める際には若干の系統誤差が生じる可能性があるため、十分考慮した上での臨床応用が重要と思われた。

本研究には若干の制限がある。15mSRTおよびCPX実施中のpeakHR、両テスト終了時の血圧、息切れ感に有意差を認め、呼吸循環応答にランダム誤差が示唆された。本研究では、CPXの全半位エルゴメータを用いたが、一般化を考慮した場合、トレッドミル走におけるpeakVO₂を100%すると、自転車エルゴメータでは820~970%となることが報告されており、フィールドテストの妥当性に関する先行研究においてもCPXにトレッドミルを用いているものが多い。また、CPXの終了基準に15mSRTの終了基準には高い目標値を設けていたため、CPXにおいて症候限界まで運動負荷が与えられなかったことも考えられる。今後は、15mSRTの終了基準を15mSRT、トレッドミルともに症候限界まで行えるようにCPXにはトレッドミルを用い、終了基準を同等に設定することが必要と思われた。また今回は、基礎的検討をするために、対象者を20歳代の若年健常者で試みた。今後の展開として、中高年者を対象に15mSRTを実施し、その有用性を検討する必要がある。

V. 結語

15mSRTにおける移動距離からpeakVO₂が予測できる可能性が示唆された。

謝辞

稿を終わるためにあたり、ご協力いただいた皆様に深く感謝申し上げます。

引用文献

1) 木村靖夫：ウィズイエイジングの健康科学、昭和
全身持久力評価としての15m Shuttle Run Test の妥当性の検討

4) 文部科学省：スポーツ. http://www.mext.go.jp/a_menu/a004.htm（閲覧日2013年11月12日）

11) 池之野有香、松山友香、三川浩太郎. 他: 20m Shuttle Run Test のプロトコルを用いた15m Shuttle Run Test による全身持久力評価の試み. 理学療法科学29 (4): p491-495, 2014.

（平成27年1月31日受理）
Validity of the 15 m Shuttle Run Test using the protocol of 20 m Shuttle Run Test for the Assessment of Exercise Capacity

Tsuyoshi KURISHITA, Yusuke SAEKI, Yoshiyasu YOZA

[Purpose] The purpose of this study was to investigate the usefulness of the 15m Shuttle Run Test (15mSWRT) modified the 20m Shuttle Run Test(20mSRT).
[Subjects] 29 healthy young volunteers.
[Method] The subjects performed the 15mSRT and CPX in random order. Usefulness of the 15mSWRT was tested by comparing the associations among the two test performance.
[Result] The correlation between the 15mSRT performance and CPX oxygen uptake was r = 0. 63. and it was represented by the regression equation: \(\dot{V}O_2 = 20. 855 + 0. 0106 \) distance. By Bland-Altman analysis, the few proportional error was showed in \(\dot{V}O_2 \) estimated from the 15mSRT and \(\dot{V}O_2 \) measured from portable metabolic system.
[Conclusion] These results suggest that the 15mSRT has usefulness as a simple test of endurance capacity.