グリシン(Gly)遊離に関与する神経終末部のCa²⁺チャネル

野中喜久 正代清光 前田恵

K⁺チャネル阻害による緩徐脱分極で生じるグリシン(Gly)作動性神経終末からの自発性Gly遊離によって誘導される抑制性シナプス後電流（mIPSC）の頻度増加が、電位依存性Ca²⁺チャネルのL型ブロッカーであるニフェジピシン、P/Q型ブロッカーのω-アガトキシンおよびN型ブロッカーのω-コノトキシンの存在下で消失した。このことはL型、P/Q型、N型のCa²⁺チャネルがGly作動性神経終末部に存在し、伝達物質であるグリシンの遊離を制御していることを示唆する。また、この神経終末部には細胞内遊離Ca²⁺によって制御されるBKとIKチャネルも存在した。

キーワード：‘シナプス・ブートン’標本、神経終末、グリシン遊離、Ca²⁺チャネル

I. はじめに

中枢神経の神経終末部からは様々な神経伝達物質が放出される、そのシナプス前神経終末部には神経物質を含むシナプス小胞が存在し、小胞は膜に融合して遊離シナプス間隔内に伝達物質を放出する。これはエキソサイトーシス（開口放出）と呼ばれ、この伝達物質の放出過程には活動電位依存性的遊離と活動電位非依存性的自発的遊離の2種類がある。また、このエキソサイトーシスには細胞外から流入したCa²⁺と細胞内Ca²⁺ストアーア(IICRやCICR)から放出された遊離Ca²⁺が関与している。

抑制性神経伝達物質であるグリシン(Gly)の場合、活動電位が放出端まで到達すると、脱分極により電位依存性Ca²⁺チャネルが開き、濃度勾配に沿ってCa²⁺が細胞内に流入する。流入したCa²⁺は、伝達物質のGlyを放出しているシナプス小胞と神経終末部膜との融合を促進する。シナプス間隔に放出されたGlyは、シナプス下膜のGly受容体に結合して、Gly受容体に内蔵されているCa²⁺チャネルを開口してCa²⁺が細胞外から細胞内へと流入させ抑制性シナプス後電流（IPSC）を発生させる。

今回、我々はGly作動性神経終末部に存在するCa²⁺チャネルの種類を明らかにすることに着手した。大半の中枢神経の微小シナプス前神経終末部の直径は1μm未満と小さく、直接パッチ記録法を適用することが困難である。従って、本実験では、機械的単離によりラット脊髄背側交感核（SDCN）ニューロンの‘シナプス・ブートン’標本を作製し、シナプス下膜であるSDCNニューロンの細胞体に、ホールセルパッチ記録電極を接着し、微小神経終末部からのGlyの放出によって発生する自発性的抑制性シナプス後電流（mIPSC）を記録し、これを指標として絶対数上のどのようなCa²⁺チャネルがGly遊離に関与しているのか間接的に調べた。

II. 方法

1. 標本

生後10～15日齢のウイスター系ラットにネプタルールを腹腔内投与（50mg/kg）して麻酔後、脊髄を摘出した。氷冷した、95%O₂-5%CO₂ガスで飽和したインキュベーション溶液で満たしたチャンバーに脊髄を設置し、マイクロスライサーで厚さ0.4μmの脊髄薄切片（スライス）標本を作製した。スライス標本は室温のインキュベーション溶液中に1時間放置し、神経機能を十分に回復させた後、標準細胞外液で満たした培養皿に移した。その後、実体顕微鏡下にスライス標本表面のSDCN領域を確認し、先端を丸くした微小ガラスビペット先端を標本表面に接触させ0.3～0.5mmの振幅で50～60Hzの機械的振動を与えて、SDCNニューロンの‘シナプス・ブートン’標本を作製した。単離したこのニューロンには、興奮性のグルタミン酸（Glu）や抑制性のGlyおよびGABA作動性神経終末部が正
常機能を保持したまま多数付着している。今回の実験では、mIPSCのみを観察するために、薬理学的にシナプス下膜上のGluやGABA受容体を抑制して実験を遂行した。Glu受容体を阻害するには6-cyano-7-nitroquinaxalone-2,3-dione(CNQX)とdL-2-Amino-5-phosphonopentanoic acid(APS)を、GABA受容体の阻害剤としてbicucullineを用いた。
さらにNa⁺チャネルの選択的阻害剤であるtetrodotoxin(TTX)を用いGlyのmIPSCを記録した。

2．細胞内液と薬液投与法
細胞内液はK⁺の代わりにCa⁺⁺内液を用い、pHをTris-baseにより7.2に調整した。薬物は標準細胞外液に溶解し、Yチューブ法により急速投与した。Yチューブは、電磁弁、減圧弁および吸引ポンプを利用して単一細胞周囲の細胞外液を20msec以内に交互可能な急速外液交換法である。Yチューブの先端は3次元マイクロマニピュレータを用い、記録する単離ニューロン細胞に薬液が直接与えられるように配置した。

3．記録方法
シナプス下膜にあたるSDCNニューロン細胞体にホールセルパッチ記録法を適用し、室温で、膜電位を0mV(Vm=0mV)に固定し、Gly作用性微小神経終末部からの自発的なGly放出によって発生するmIPSCの発現数および電流の大きさを指標とし、間接的にシナプス前神経終末部へのCa⁺⁺の影響を検討した。

図1 Glyで惹起される自発性後電流のmIPSCへのK⁺チャネル阻害剤の効果
A: 30μM 4-APを加えたときのmIPSCの変化。
B: コントロールおよび4-APを加えたときのmIPSCの発生頻度の比較。図中に示したヒストグラムは、解析を行った17個の細胞において平均頻度数。***p<0.05
C: 4-APの濃度-mIPSC頻度の関係。4-APの濃度依存性にmIPSCの頻度が増加する。

ネルが開口しCa⁺⁺が細胞内へ流入する。流入したCa⁺⁺により、細胞内のCa⁺⁺濃度が上昇し、さらにCa⁺⁺ストアからCa⁺⁺放出が起こる。これらの遊離Ca⁺⁺によって細胞体からのGly放出は促進される。また、mIPSCを指標として観察したGly放出頻度は4-APの濃度依存的に増加したが、電流の大きさは変化しなかった。

2．無Ca⁺⁺外液中での4-APとカドミウム(Cd⁺⁺)の効果
細胞外液中のCa⁺⁺を取り除き、無Ca⁺⁺状態で4-APによる影響を観察した(図2)。まず、正常外液中(2mM Ca⁺⁺)で4-APによりGlyの遊離が促進されることを確認し(図2A,a)，次に外液をCa⁺⁺濃度2mMからEGTAを含む無Ca⁺⁺溶液にした状態で、4-APを添加すると頻度、振幅共に変化しなかった(図2A,b)。これは細胞内にCa⁺⁺の流入が生じないと伝達物質であるGlyの遊離が起こらないことを示す。すなわちGlyの放出には細胞内へ
のCa⁺⁺の流入が必須であることが確認された。さらには、Ca⁺⁺を含む外液であっても、Ca⁺⁺チャネルの選択的阻害剤であるCa⁺⁺の存在下で、4-APの作用はみられなかった(図2B)。したがってCa⁺⁺チャネルの開口によるCa⁺⁺の細胞内への流入
図2 みPSCへの無Ca2+外液とCd2+の効果
 Aa: 30μM 4-APを加えたときのmIPSCの変化。
 Ab: 無Ca2+外液下に30μM 4-APを加えたときの
 mIPSCの変化。
 B: 無Ca2+外液やCd2+存在時のmIPSCの頻度
 変化。（4-AP n=9, Ca2+-free n=4, Cd2+
 n=5）
 * p<0.001, ** p<0.01, *** p<0.05,
 n.s 有意差なし。

がGly作動性のmIPSCの発生に関与することがわ
かった。

3. Ca2+チャネル阻害剤のmIPSCへの作用

Gly放出に関与するCa2+チャネルサブタイプを明
らかにするため、Ca2+チャネルのサブタイプのL
型阻害剤であるnifedipine（Nif）、P/Q型阻害剤であ
るω-agatoxin IVA（AgTX）及びN型阻害剤のω-
conotoxin GVIA（CgTX）を用いての実験結果を図3
に示す。それぞれ4-APと同時に作用させたところ、4-AP単独での作用と比較してmIPSC頻度の増
加有意差をもって減少した。この結果よりK+
チャネル阻害による脱分極で開口する神経終末部
のCa2+チャネルはL型、P/Q型およびN型サブタイ
プであると薬理学的に結論された。

4. 細胞内Ca2+で活性化されるK+チャネルへの阻
害剤効果

細胞内Ca2+濃度の上昇によって開口するK+チャ
ネルがある。これらK+チャネルの選択的阻害剤を
作用させて得られた結果を図4に示す。これらの
K+チャネルはその単一チャネルコンダクタンスの
大きさから、BKチャネル、IKチャネルおよびSK
チャネルの3種類に分類される。大きなコンダクタ
ンスを持つBKチャネルはiberiotoxin(IbTX)に

図3 4-APによるmPSC頻度増加に対する選
択的Ca2+拮抗薬の抑制作用。ヒストグラム
はmIPSCの平均発生頻度を示す（n =
4～7）。
* p<0.001, ** p<0.01, *** p<0.05,
n.s 有意差なし。

図4 細胞内Ca2+で賦活される各種K+チャネ
ルへの選択的阻害剤によるmPSCの平均
頻度。
Ibe TX, n=6; ChTX, n=6; Ibe TX+Ch
TX, n=5; Apa, n=5。
* p<0.001, ** p<0.01, *** p<0.05,
n.s 有意差なし。

って、中間のコンダクタンスのIKチャネルは
charybdotoxin(ChTX)、小さいコンダクタンスの
SKチャネルはapamin(Apa)によってそれぞれ阻
害される。300nM IbeTXと10nM ChTXでは
mIPSCsの頻度の増加が確認されたが、1μM Apa
では有意に増加しなかった。いずれも振幅には変化
がなかった。またIbeTXとChTXを同時に添加し
たところ、さらに頻度の増加がみられた。したがっ
て神経終末部には細胞内Ca2+の増加によって賦活
されるBKチャネル、IKチャネルが存在することが
IV. まとめ

1. K⁺チャネル阻害剤の4-APによる神経終末部の脱分極によりL型、P/Q型およびN型Ca⁺⁺チャネルが開口し、細胞内にCa⁺⁺が流入する。
2. 細胞内Ca⁺⁺濃度の上昇により活性化するK⁺チャネルには、BKチャネルとIKチャネルがある。

V. 謝辞

本実験の遂行にあたり、ご指導をいただいた本学赤池紀生教授に深謝致します。

VI. 文献

（平成18年1月16日受理）

野中喜久，正代清光，前田 恵
〒861-5598 熊本市和泉町亀の甲325番地
熊本保健科学大学
保健科学部 衛生技術学科
Contribution of Ca Channels on Glycine Release from Nerve Endings

Kiku NONAKA, Kiyomitsu SHOUDAI, Megumi MAEDA

Abstract

In the presence of selective Ca\(^{2+}\) channel blockers of L-type, P/Q-type and N-type, the slow depolarization of nerve endings induced by K\(^+\) channel blockers failed to increase the frequency of spontaneous glycine inhibitory postsynaptic currents (mIPSC). The results indicate that the glycergic nerve endings have the high-threshold Ca\(^{2+}\) channels such as L-, P/Q- and N-types. In addition, the intracellular Ca\(^{2+}\)-sensitive K\(^+\) channels such as BK and IK also existed in the glycergic nerve endings.